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Abstract 
The aim of this project is to determine the conditions under which branching systems are a viable 
alternative.  There are abundant examples of branching patterns in the nature prompting a large 
number of studies trying to explain this naturally occurring phenomenon. A general analytical 
model for predicting the total pressure drop in a branching system is presented. The predictions 
of the model are compared with the available results, including the numerical predictions of three 
dimensional flows, showing the model is reasonably accurate, and can be used to predict the 
impact of different parameters. The model is then used to develop criteria under which branching 
systems are advantageous.  It is shown that some of the generally believed assumptions about the 
branched systems may not be valid, including one of the predictions of the Constructal theory. 

Nomenclature 
Ab Branching surface area 
c Number of children  

 dh  Hydraulic diameter 
L Branching pipe length 
  !m  Mass flow rate  
n  Number of generations 
Re Reynolds number 
t Pipe thickness 
ΔP Pressure Drop 
V Velocity 
x Straight distance between inlet and outlet 
λ Length ratio 
δ Diameter ratio 
θ Half branch Angle 
µ Dynamic viscosity  
ν Kinematic viscosity 
ρ Fluid density 
ρs Solid density 
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Introduction 
Contrary to manmade flow systems, the flow systems in nature rarely involve flow in long 
straight passages.  The common feature amongst air flow through lungs; water flow through river 
systems; nutrients flow through tree roots and branches; blood flow through arteries, vein and 
capillaries is that they all have branching pattern.  The reason why nature has a preference for 
branching patterns and their characteristics have been subject of speculation and research for 
centuries.   
The earliest attempt to model this phenomenon appears to have been by Thomas Young in 1808 
[1] in his efforts to study flow resistance of an arterial system. He assumed a ratio of 
1.26(=21/3):1 for the diameters of parent and children vessels and calculated that twenty-nine 
bifurcations were necessary to diminish the aorta to the size of the capillaries. Young did not 
provide a justification for why he chose that ratio. [2].   

Murray [3] considered the geometry of branching junctions in mammalian cardiovascular 
networks and postulated that evolution and natural selection must have resulted in an optimum 
system that is a compromise between the cost of building and maintaining the network, which is 
proportional to the square of the radius, and the cost of transporting fluid through the network, 
which for laminar flow in a cylindrical tube is given by Poiseuille’s flow and is inversely 
proportional to radius to the fourth power [4]. The formulation results in the volumetric flow rate 
to be proportional to the cube of the vessel diameter 
   !V = kd 3 	 (1)	
 
Using this and the conservation of mass at a branching point result in the following relation for 
diameters in successive generations 

  
di

3 = di+1,1
3 + di+1,2

3 + ... 		 (2)	
 
which for identical children and bifurcating system reduces to  

  di
3 = 2di+1

3  (3) 
which is identical to what Young had proposed.  The Murray's law is based on two biologically 
reasoned assumptions[2] that evolution and natural selection lead to optimality in (a) geometry 
and (b) maintenance. The approach has also been extended to nonliving systems, including 
engineered ones, by including maintenance and operating/energy costs.   

Some studies [5-6] have focused on advantages of branching systems under imposed constraints, 
such as a fixed volume or area. As much it sounds reasonable for that to be the case, there is no 
known natural law, including evolution and natural selection that requires nature to strive for 
efficiency, or operate optimally, or to have limits on volume or area. Evolution, has no 
directional preference for traits, as long as the traits have no effect on procreation or their impact 
is manifested past that time, those traits will persist and are passed on to the future generations. 

In this paper, a general solution for pressure drop in branching systems is derived and used to 
determine conditions under which such systems are viable and may provide advantages, without 
any imposed volume, area, or mass constraints. 
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Analytical Derivation 
The problem to be considered is a fluid is to be delivered a distance x away from the inlet, at a  
given mass flow rate in a branching system shown in Fig. 1 for a 4 level bifurcating system. 
The analysis is carried out for laminar, fully developed flow neglecting minor losses.  

 
Figure 1: 2D Geometry of the Branching system  

The pressure drop for laminar flow in a circular parallel pipe of diameter d that is to deliver a 
total mass flow rate of of  !m  a horizontal distance x is given by  

ΔP = Gν !mx
dh
4  (4) 

where G is 

G =

2C
π

circular pipe

2C
4 1+α( )2

α

rectangular pipe

⎡

⎣

⎢
⎢
⎢
⎢
⎢
⎢

 (5) 

where C is the Poiseuille constant. For a circular pipe C=64, and for a rectangular pipe [7] 

  
C = 96 1−1.3553α +1.9467α 2 −1.7012α 3 + 0.9564α 4 − 0.2537α 5( )  (6) 
where α <1 is the aspect ratio  
For a branching system, having a parent and n-1 children for a total of n generations, the total 
flow length is the sum of the lengths of the individual branched pipes, where x represents the 
straight distance from the inlet of the first pipe to the outlet of the last, and the branching angle, 
θ,  is the half angle between the branched pipes, having a maximum of 45˚.  In terms of the 
branch lengths, x is given by 

x = L1 + L2 + ......Ln( )cosθ  (7) 

If λ>1 is the parent-to-child length ratio  

x	
4	
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L1	
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λ = Li
Li+1

 (8) 

Then  

Li =
L1
λ i−1  (9) 

and Eq. (7) can be solved for the length of the first (parent) branch 

L1 =
x

1− cosθ( ) +
1
λ n −1

1
λ
−1

cosθ

 (10) 

Similarly, we can define the diameter ratio 

δ = di
di+1

 (11) 

and therfore,  

di =
d1
δ i−1  (12) 

The mass flow rate at each branch level i is  

 
!mi =

!m1

ci−1
 (13) 

where c is the number of children in each generation, c, assumed constant in all generations.  The 
total pressure drop is given by 

ΔPb = ΔPi∑  (14) 

For fully developed flow in a circular pipe 

 
ΔPi =

128ν
π
!mi
Li
di
4 =

128ν
π
!m1L1
d1

δ 4

cλ
⎛
⎝⎜

⎞
⎠⎟

i−1

 (15) 

which when substituted in Eq. (14) and simplified results in an explicit expression for pressure 
drop in a branching system with n generations. 

 

ΔPb =
128ν !mL1
πd1

4

δ 4

cλ
⎛
⎝⎜

⎞
⎠⎟

n

−1

δ 4

cλ
⎛
⎝⎜

⎞
⎠⎟
−1

 (16) 

Note that if the distance x is known, L1 can be determined from Eq. (10).  
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This equation reveals something interesting, in that the parameter δ
4

cλ
 must be less than one 

δ 4

cλ
<1   (17) 

otherwise the pressure drop increases exponentially, with increasing number of generations.    

 
The total area of the branching system is 

Ab = Ai
1

n−1

∑ = ci−1πdiLi
1

n−1

∑  (18) 

which results in 

Ab = πd1L1

c
δλ

⎛
⎝⎜

⎞
⎠⎟
n

−1

c
δλ

⎛
⎝⎜

⎞
⎠⎟ −1

 (19) 

To avoid area increasing exponentially requires 
c
δλ

<1   (20) 

The mass of the branching system is calculated by adding the mass at each generation 

mb = ρs
π
4

di +τdi( )2 − di2⎡
⎣

⎤
⎦∑ Lic

i−1 = ρs τ 2 + 2τ( )π4 di
2∑ Lic

i−1  (21) 

which simplifies to 

mb = ρs τ 2 + 2τ( )π4 d1
2L1

c
λδ 2

⎛
⎝⎜

⎞
⎠⎟
n

−1

c
λδ 2

⎛
⎝⎜

⎞
⎠⎟ −1

 (22) 

where it is assumed that the thickness of the pipe, t, is proportional to pipe inner diameter,  
t = τd    (23) 
 
This condition results in constant hoop stress in all the branches and ensures structural soundness 
of the system, that if the first branch can withstand the system pressure, the last branch, which 
will be at a lower pressure and smaller diameter will also be able to.   

Again, to have a finite mass  
c

λδ 2 <1   (24) 
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Results 
The closed form solution provided by Eq. (20) provides much insight into the behavior of the 
branching systems including fractal-like branching micro-channel heat sinks.  It is based on the 
assumption that flow is laminar and fully developed.  The fully developed assumption is an 
approximation. On the one hand, it under-predicts pressure drop, since it does not account for 
flow acceleration at the inlet, and on the other hand it over-predicts since it does not account for 
pressure recovery at the branching because of area expansion. A number of other studies are 
available and we compare their results with the predictions of the model. 

Table 1 compares the pressure drop predictions of the model with those of some available 
results, and as can be seen the results are in reasonable agreement, specially since the available 
results are for rectangular branching systems and Eq. (16) is for a circular one. 

Table 1 Comparison with available results 

Ref. n Hk(mm) wk(mm) dhk (mm)Lk(mm) d l c Vol DP ref DP, curr Error
[8] 4 0.5 1.285 0.72 12.45 1.26 1.41 2 0.65 0.5 0.6 13%
[8] 4 0.5 1.285 0.72 12.45 1.26 1.413 2 5 4.2 4.6 10%
[8] 4 0.5 1.285 0.72 12.45 1.26 1.413 2 15 12.9 13.8 7%
[8] 4 0.5 1.285 0.72 12.45 1.26 1.413 2 25 22.2 23.1 4%
[9] 4 0.25 0.539 0.342 5.8 1.26 1.415 2 1.8 88.0 81.3 8%

[10] 4 0.25 0.643 0.36 6.23 1.259 1.416 2 0.90 83.0 78.0 6%  
Alharbi [9] also conducted a 3D numerical investigation and their pressure drop results from the 
CFD analyses is 50% lower than the one dimensional results presented in Table 1. 

In order to determine the accuracy of Eq. (14), we also conducted a CFD analysis.  The geometry 
shown in Fig. 2 was generated in Creo Parametric and imported into Ansys for meshing and 
analysis.  

 
Figure 2: Branching system SpaceClaim model 

To ensure fully developed flow at least in the parent and the final generation, extension pipes 
were added to the inlet of the first generation and the outlets of the last. A 200 mm extension was 
added to the first generation of the first generation, and the exit 4th generation was extended by 
an additional 25 mm.  The outlet of the 25 mm extension was specified as pressure outlet with a 
magnitude of zero. 
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Because the branching shape is mostly cylindrical (curved) and contains small protrusions at the 
bifurcation regions, tetrahedron unstructured meshing was implemented. Tetrahedron mesh, as 
opposed to a quadrilateral mesh, more effectively discretizes curved surfaces. Additionally, to 
ensure a smooth transition between the mesh refinement on the pipe’s surface and the inner fluid 
domain, an inflation of 10 layers with a growth factor of 1.2 was implemented. The inflation 
layers at the interior surface of the pipe captures the changes in the boundary layer more 
accurately. Face sizing and edge sizing has also been used to create the mesh. A total of 
8,619,594 elements and 3,044,681 nodes were used.  

The non-dimensional x- component of the centerline velocity of the 1st generation of the 
branching system and that of a single pipe (parallel pipe) is plotted against the non-dimensional 
distance along pipe in Fig. 3.  

 
Figure 3: Non-dimensional velocity vs. non-dimensional distance 

The dimensionless velocities should reach a value of 2, twice the centerline inlet velocity, when 
the flow becomes fully developed.  The pressure drop was calculated by subtracting the pressure 
at 25 mm the outlet of the branching system (before the extension section) from the pressure at 
x=200 mm (inlet of the branching system after the extension section). The CFD results provided 
a pressure drop of  

  ΔP = 1.2803×10−2   

in the branching system.  For the conditions given, Eq. (14) predicts a pressure drop of  
  ΔP = 1.3803×10−2 , which is different by 8%. 

The pressure for the entire system was exported from Ansys and compared to the analytical 
results using excel. The exact analytical results were tabulated in excel and plotted with the data 
retrieved from Ansys and are shown in Fig. 4.  

As can be seen from Fig. 4, there are slight differences between the branches because of small 
differences in the branch mass flow rate.  Since the mass flow rate is not exactly divided by two 
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at the bifurcation region.  The CFD simulations also reached fully developed conditions in the 
first and 4th generations as a result of adding the extensions.		 The 3 dimensional CFD simulation 
results for pressure drop is in close agreement with the analytical results based on a fully 
developed flow throughout the whole system. 

 

 
Figure 4: Pressure drop comparison of Numerical and the analytical Predictions  

 
As mentioned above, for a branching system to have finite mass, area, and pressure drop, three 
criteria different have to be met. The criterion for finite surface is a stronger than the one for 
finite mass, i.e. if Eq. (20) is satisfied, so will Eq. (24). The remaining two criteria result in  

δ 4

λ
< c < δλ  (25) 

This is an interesting conclusion which sets the criteria for a branching system to be a physically  
viable option by being able to grow and exist at different scales. In a sense, it is setting the 
condition for it to function as a fractal system and continue to replicate itself over a broad range 
of scales and remain viable.   
From Murray’s law, for a bifurcating system 

δ = 21/3    (26) 

Substituting in Eq. (25), imposes a minimum for λ in a bifurcating system, requiring that 

λ > 22/3  (27) 

Meeting this condition also satisfies the other requirement that  

δ 4

λ
= 2

4/3

22/3
= 22/3 < 2 . 
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These results of Eq. (25) are interesting and different than some of what has been proposed.  
Bejan and Laurent [11] argue that when channels bifurcate or coalesce their diameters should 
change so that the overall flow through the architecture is facilitated, and indicate that happens 

for δ = 21/3 and λ = 21/3 .  These values result in δ
4

cλ
= 1  and c

δλ
= 1.26 and are expected to lead to 

increasing pressure drop, area, and mass in the branching system with increasing number of 
generations, which will not make such a system physically viable if they are expected to grow.   

This is illustrated by an example.  Consider water at the rate of 0.314 kg/s is to be delivered over 
a distance of 1000 m in a branching system whose initial pipe diameter is 0.4 m.  All flow 
specifications are shown in Table 2 for two cases, one satisfying the constraints (25) and another 
following recommendations of Constructal law.   

Table 2 Flow Conditions 
x	(m)	 1000.00	 1000.00	
d1	(m)	 0.4	 0.4	
c	 2.00	 2.00	
n	 20.00	 20.00	
θ (rad) 0.3927	 0.3927	
ν (m2/s) 1.05E-06	 1.05E-06	
ρ  (kg/m3) 1.00E+03	 1.00E+03	
ρs (kg/m3) 8.96E+03	 8.96E+03	
µ (Pa.s) 1.05E-03	 1.05E-03	
V	(m/s)	 2.50E-03	 2.50E-03	
δ 1.31	 1.26	
λ 1.70	 1.26	
τ 3%	 3%	
mass	flow	(kg/s)	 3.14E-01	 3.14E-01	
Re1	 950.75	 950.75	
δ4/cλ	 0.86	 1.00	
c/δλ 0.90	 1.26	
c/δ2λ 0.69	 1.00	

As can be seen in Fig. 5, the constraints lead to pressure drop and the system mass to asymptote 
to constant values.  For this case, the driving potential (pressure drop) for the flow remains 
constant as the number of generations increases, or pressure drop does not prevent the number of 
generations to increase.  If the constrains are not met, the pressure drop and mass of the 

branching system grow exponentially (in this case linearly since δ
4

cλ
= 1) and the system becomes 

impractical.  For the example, the pressure drop is 1.5 times and the mass is over three times 
more after 20 generations. 
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Figure 5 Variation of pressure drop (solid lines) and mass (dashed lines) with generations 

Conclusion 
The analytical model developed is able to predict the pressure drop in branching systems and is 
used to develop the criteria for them to be physically viable and replicating.  Essentially, the 

model states that for branching systems to be viable δ
4

λ
< c < δλ  which are the criteria for these 

systems to be fractal. 
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